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Based on the coupled mode theory, the bistability performance of nonlinear Bragg gratings(NLBG) is analyzed theoretically 
in terms of elliptic integration, the analytical expression describing the relation between the input intensity and the output 
intensity is presented. As a result, the dependence of the bistability on the gratings parameters is investigated numerically. 
The results show that, the bistability performance of the nonlinear Bragg gratings will be influenced greatly by the couple 
coefficient, the grating length and detuning respectively. 
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1. Introduction 
 
Nonlinear Bragg grating (NLBG) has exhibited wide 

potential applications in optical limiting, optical switching, 
soliton communication and so on [1-2], due to its 
particular properties. With the rapid improvement of the 
material growth techniques, precise control of the grating 
length and refractive index modulation amplitude becomes 
possible, as a result, nonlinear phenomena can occur 
unrequired very high incident power despite the relatively 
weak nonlinearities optical materials. Inside photonic band 
gap (PBG), optical bistability occurs when a positive 
feedback loop (among inner optical intensity, nonlinear 
refractive index, and Bragg resonance frequency) causes 
the Bragg wavelength shift to longer or shorter wavelength 
[3-5]. Coupled mode equation are extensively used for the 
analysis of distributed-feedback structure because of its 
simplicity and flexibility, until now, its main numerical 
methods include Transfer matrix method and Runge-Kutta 
method, which have disadvantage that it can be hard to 
find out general optical properties. In addition, most 
reports on the switching performance of fiber Bragg 
grating, in general, regard the couple coefficient and the 
grating length as a whole to facilitate discussion [3-12]. In 
fact, in the literature [12], the results have implied the 
single dependent relationship between the switching 
performance and the grating length.  

In this paper, based on the coupled mode theory, we 
have presented the analytical expression describing the 
relation between the input intensity and the output 
intensity, and investigated the influence of grating inner 
parameters on the bistability performance of nonlinear 
Bragg gratings in terms of elliptic integration. 

 
 
 

2. Theoretical model 
 
Inside fiber gratings, the z -axial distribution of 

refractive index can be described by 
2

0 1 0 2( ) ( )cos[2 ] ( )n z n n z z n E zβ ϕ= + + + ,      (1) 

where ( )E z  is the inner electric field of grating,，the 
Bragg wave vector 0β  is given by 0 /β π= Λ , and 
Λ  is the grating period， 0 0/ 2nλΛ = , 0λ  is the Bragg 
wavelength，φ  is the constant phase. 0n ， 1( )n z ，and 

2n  denote the effective mode refractive index, linear 
refractive index modulation amplitude, and nonlinear 
refractive index coefficient, respectively.  

The inner electric field can be expressed by 

( ) exp[ ] exp[ ]f bE z E i z E i zβ β= + − ,      (2) 

where 0 /n cβ ω= , and ω  is the carrier angular 
frequency, c  is the speed of light in vacuum, fE  and 

bE  represent the slowly varying amplitude of forward 
and backward wave, respectively. In this paper, we assume 
that the incident wave is continuous wave. Substituting 
Eqs. (1) and (2) into the wave equation, one can obtain the 
following static state nonlinear coupled mode equations 
[8] 

2 2exp[ (2 )] ( 2 )f
b f b f

dE
ikE i z i E E E

dz
δ φ= − − + Γ + , (3a) 

2 2exp[ (2 )] (2 )b
f f b b

dE
ikE i z i E E E

dz
δ φ=− − − Γ + , (3b) 

where δ , Γ and k  account for the detuning, nonlinear 
coefficient, and coupling coefficient, respectively, which 
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can be expressed by 

0δ β β= − ， 2

0

nπ
λ

Γ = ,  1

0

( )
( )

n z
k z

π
λ

= .  (4) 

In order to solve the eqs. (3a) and (3b), we separate 
the magnitude and the phase of the counterpropagating 
field as 

exp( )f f fE E iφ= ， exp( )b b bE E iφ= .   (5) 

Substituting Eqs. (5) into Eqs. (3), one can obtain the 
following conserved quantities 

2 2 2
T f bE E E= − , 

22cos ( ) (2 3 ) / 2f b b fG E E z E E kψ δ= + + Γ ， (6) 

the quantity 2
TE  can be interpreted as the transmitted 

flux in the entire structure. The phase ( )zψ  appears in 
Eq. (6) is given by  

( ) 2 f bz zψ δ φ φ φ+ − −＝ ,         (7) 

Using the conserved quantities 2
TE  and G , we can 

obtain the following equation  
2

2 2( )[( ) ( )( 2 ) ] ( )
2
L dy y J kL y y J L y Q y

dz
δ⎛ ⎞ = − − − + =⎜ ⎟

⎝ ⎠
，（8） 

where 
2 2/f cy E E= ,

2 2/T cJ E E= , 

2
0 0 24 /3cE n n Lλ π= .           (9) 

The boundary conditions are given by 

:0=z (0)f iE E= ,  )0()0( br EE = ,    (10a) 

:Lz = 0)( =LEb , ( )t fE E L= ,       (10b) 

where iE 、 rE  and tE  are the slowly varying 
amplitudes of the incident, reflected and transmitted wave, 
respectively. Combination of Eq. (8) and Eqs. (10) enables 
us to construct the following equivalent relationship:  

0z = ， 2 2(0) /i cy I E E= = ； 

z L= ， 2 2 2 2( ) ( ) ( )f b f TE L E L E L E− = = ，

2 2 2 2 2 2( ) ( ) / / /f c t c T cy L E L E E E E E J= = = = .(11) 

As a result, the integration of Eq. (8) yields the the 
analytical expression describing the relation between the 

input intensity and the output intensity. The integration is 
the standard elliptical problem whose solution depends on 
the relation between limits to be applied in the integration 
and the zeros of the polynomial ( )Q y , where 

1y J= ， 

+++−= 3 32
2 )3/()2/(2/ pqqy  

3
)3/()2/(2/3 32 spqq −+−− ， 

+++−×= 3 32
3 )3/()2/(2/ pqqmy  

3
)3/()2/(2/3 322 spqqm −+−−× ， 

+++−×= 3 322
4 )3/()2/(2/ pqqmy  

3
)3/()2/(2/3 32 spqqm −+−−× ， 

1 3
2
im − +

= ，  2 1 3
2
im − −

= ,  2 1i = − , 

2 2 2( ) /12 ( ) /3 ( ) / 4 /3p L L J kL Jδ δ= − − − − ,  

s L Jδ= − ， 

−−−−= 9/)(18/)(108/)( 223 JLJLLq δδδ  

12/)(12/)()(27/2 223 JkLLkLJ −+ δ ，  (12) 

The integration results are as follows: 

( )

(0) 0

2
( ) ( )

y L J L

y I

dy dy dz
LQ y Q y

= =∫ ∫ ∫ ,    (13) 

1. 1 2 3 4,y I J y y y≥ > > > , 

the integration on the left-hand side of Eq. (8) can be 
written as 

1 (sin , ) /
( )

J

I

dy sn v u
Q y

θ−= −∫ ,     (14) 

where (sin , )sn vθ  is a Jacobian sine elliptic function, 

and 
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1/ 21 3 2

1 2 3

( )( )
sin [ ]

( )( )

y y I y

y y I y
θ

− −
=

− −
, 

1/ 2
1 3 2 42[( )( )]u y y y y= − − , 

1/ 2
1 2 3 42[( )( )] /v y y y y u= − − .       (15) 

Inversion of Eq. (14) leads to 

3 2
3

21 2

1 3

1 ( , )

y y
I y

y y
sn u v

y y

−
= −

−
−

−

,     (16) 

2. 1 2,y I J y≥ > , and *
3 4y y=  

the integration on the left-hand side of Eq. (8) is now 
solved as 

1 (cos , ) /
( )

J

I

dy cn v u
Q y

θ−= −∫ ,      (17) 

where (cos , )cn vθ  is a Jacobian cosine elliptic 
function, and 
 

  1 2

1 2

( ) ( )
cos

( ) ( )
y I B I y A
y I B I y A

θ
− − −

=
− + −

, 4u AB= ,  

2 2 2
1 2[( ) ( ) ] / 4v y y A B AB= − − − , 1 3A y y= − , 

2 3B y y= −                 (18) 

Inversion of Eq. (17) can obtain 
 

1 2
2

1 3

2 3

1 ( , )1
1 ( , )

y y
I y

y y cn u v
y y cn u v

−
= +

− +
+

− −

,       (19) 

3. 1 2 3 4,y y y I J y> > ≥ >  

the modulus v  and the argument u  are unchanged and 
gived by Eq. (15), 

1/ 21 3 4

3 4 1

( )( )
sin [ ]

( )( )
y y I y
y y y I

θ
− −

=
− −

, 

1 4
1

23 4

3 1

1 ( , )

y y
I y

y y
sn u v

y y

−
= +

−
−

−

,       (20) 

 
3. Results and discussions 
 
To facilitate description, the input and output light 

intensity iI , tI  are normalized as ci II / , ct II /  
respectively in following discussions, where 2

c cI E= . 
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Fig. 1. Stable input-output characteristics of NLBG for  
various couple coefficient. 

 
 

Fig. 1 shows the steady-state input-output 
characteristics of NLBG for various couple coefficient. 
From the figure, it can summarize the dependence of the 
bistability characteristics on the couple coefficient for a 
certain frequency incident light and grating length. For 
low values of k  the feedback is insufficient to create 
bistability, the optical transmission mode of operation 
occurs at 12.5k cm−= . With increasement of couple 
coefficient, the grating internal feedback enhanced, a 
hysteresis loop is traced out at 13.5k cm−= , and larger 
values of k  lead to multiple-phenomena. 

 



J.-F. Tian 
 

 

1794 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

  Input Intensity (I
i
 / I

c
)

 O
ut

pu
t I

nt
en

si
ty

 (I t / 
I c)

a 

b 

c 

a: L=1.0cm  
b: L=1.5cm  
c: L=2.0cm
 K=4.0cm-1 
 δ=2.5cm-1  
            

 
 

Fig. 2. Stable input-output characteristics of NLBG 
 for various grating length. 

 
Fig. 2 shows the steady-state input-output 

characteristics of NLBG for various grating length, where 
12.5cmδ −=  14.0k cm−= . From the figure, it can be 

seen that , the grating length have obvious influence on the 
bistable characteristics, such as the switching-on threshold, 
the on-off ratio, the width of the hysteresis and the 
transmittance of the upper branch. When length is smaller, 
no bistable phenomena occurs. With the gradual 
increasement of length, the bistable effect begin to occurs, 
moreover the width of the hysteresis increase rapidly, for 
the bigger length, it exists two hysteresis.  
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Fig. 3. Stable input-output characteristics of NLBG 
for various initial detuning. 

 
 

Fig. 3 shows the steady-state input-output 
characteristics of NLBG for various initial detuning. From 
the figure, it can be seen that, the detuning (the incident 
wavelength) have obvious influence on the bistable 
characteristics: When the detuning decreases, and the 
incident wavelength shifts to higher values of the Bragg 
wavelength, then the lasing threshold increases 

significantly, even the bistable phenomena vanishes with 
increasement of the detuning. These features may be 
understood as follows: In the case of smaller detuning, the 
frequency of the incident light lies in the centre of 
reflection spectrum, and the transmitted light is “stopped” 
when the input intensity is lower, therefore, the required 
switching-on threshold to excite bistability is larger, and 
the on-off switching ratio is also large. 

 
4. Conclusions 
 
Based on the nonlinear coupled mode theory, this 

paper has demonstrated the bistability performance of 
nonlinear Bragg gratings in terms of elliptic integration, 
and presented the analytical expression describing the 
relation between the input intensity and the output 
intensity. Both theoretical analysis and numerical 
simulations show that, the bistability performance of the 
nonlinear Bragg gratings has significant dependence on 
the the couple coefficient, the grating length and the 
detuning respectively. The results may provide an 
instructive insight from a practical viewpoint. 
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